Menu
STARS Project
close
STARS Project
close

Refine your search

STARS Project
Knowledge Portal
Author: Kolotii, A. and Kussul, N. and Shelestov, A. and Skakun, S. and Yailymov, B. and Basarab, R. and Lavreniuk, M. and Oliinyk, T. and Ostapenko, V.

Comparison of biophysical and satellite predictors for wheat yield forecasting in Ukraine

Journal: ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Volume: XL-7/W3
Year: 2015
Pages: 39--44

Abstract

<p>Winter wheat crop yield forecasting at national, regional and local scales is an extremely important task. This paper aims at assessing the efficiency (in terms of prediction error minimization) of satellite and biophysical model based predictors assimilation into winter wheat crop yield forecasting models at different scales (region, county and field) for one of the regions in central part of Ukraine. Vegetation index NDVI, as well as different biophysical parameters (LAI and fAPAR) derived from satellite data and WOFOST crop growth model are considered as predictors of winter wheat crop yield forecasting model. Due to very short time series of reliable statistics (since 2000) we consider single factor linear regression. It is shown that biophysical parameters (fAPAR and LAI) are more preferable to be used as predictors in crop yield forecasting regression models at each scale. Correspondent models possess much better statistical properties and are more reliable than NDVI based model. The most accurate result in current study has been obtained for LAI values derived from SPOT-VGT (at 1 km resolution) on county level. At field level, a regression model based on satellite derived LAI significantly outperforms the one based on LAI simulated with WOFOST.</p>

Related pages