STARS Project
STARS Project

Refine your search

STARS Project
Knowledge Portal
Author: Mathews, Adam and Jensen, Jennifer

Visualizing and Quantifying Vineyard Canopy LAI Using an Unmanned Aerial Vehicle (UAV) Collected High Density Structure from Motion Point Cloud

Journal: Remote Sensing
Volume: 5
Year: 2013
Number: 5
Pages: 2164--2183


This study explores the use of structure from motion (SfM), a computer vision technique, to model vine canopy structure at a study vineyard in the Texas Hill Country. Using an unmanned aerial vehicle (UAV) and a digital camera, 201 aerial images (nadir and oblique) were collected and used to create a SfM point cloud. All points were classified as ground or non-ground points. Non-ground points, presumably representing vegetation and other above ground objects, were used to create visualizations of the study vineyard blocks. Further, the relationship between non-ground points in close proximity to 67 sample vines and collected leaf area index (LAI) measurements for those same vines was also explored. Points near sampled vines were extracted from which several metrics were calculated and input into a stepwise regression model to attempt to predict LAI. This analysis resulted in a moderate R2 value of 0.567, accounting for 57 percent of the variation of LAISQRT using six predictor variables. These results provide further justification for SfM datasets to provide three-dimensional datasets necessary for vegetation structure visualization and biophysical modeling over areas of smaller extent. Additionally, SfM datasets can provide an increased temporal resolution compared to traditional three-dimensional datasets like those captured by light detection and ranging (lidar).


LAI,SfM,UAV,bundle adjustment,point cloud,structure from motion,vegetation,vineyard

Related pages